If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-15t-100=0
a = 1; b = -15; c = -100;
Δ = b2-4ac
Δ = -152-4·1·(-100)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-25}{2*1}=\frac{-10}{2} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+25}{2*1}=\frac{40}{2} =20 $
| -9z-9=-8z-7 | | t^2-15t+100=0 | | 5/d+3=-7/d+5 | | V=1/2x26 | | 5x2-2x-5=0 | | 3+6^x=23 | | 5d+25=-7-21 | | 10=22y | | -4j-9(-5)/7=13 | | 5x-2x-5=0 | | 36n2-1=24 | | 2(x-4)^2-5=13 | | 35-n=25 | | 144=(9+x)(8+x) | | 7y=6y-7 | | 65+126x=114 | | 0.5x1=0.9x+0.2 | | 7v2-11v-10=0 | | 18x^2+99x+108=0 | | 2x+6=9x+5 | | 6n+3=5n+4 | | 5^x-5=13 | | 5x+2-3x=12+x+3 | | 2(7x+4x)=4x-6(2-x)+7 | | 2(7x+4$=4x-6(2-x)+7 | | 1/4y-16+2=-(4/y-4) | | -110=-3v+5(1-4v) | | (2x)-6=x+7 | | 2x+10=5x+9 | | 3(x-5)+(8x+2)=7x-9 | | 3x+4+115=180 | | -4t-6-t=-2t |